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Diffusion in two-dimensional colloidal systems on periodic substrates
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We study the diffusive behavior of two-dimensional charged colloidal suspensions subjected to a sinusoidal
substrate by means of Brownian dynamics simulations. We mainly focus on the dependence of the mean-square
displacement on the substrate strength. Our findings show a variation in the particle diffusion due to a
substrate-induced distortion of the dynamic cage of nearest-neighbor colloids. This mechanism leads to a
transition from normal diffusion at short times to subdiffusion on intermediate time scales. However, at long
times normal diffusion is recovered. We also show that the variation in the long-time self-diffusion coefficient
may be associated with the freezing and re-entrant melting transitions.
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I. INTRODUCTION

The study of transport properties in restricted dimensions
is crucial to understand dynamical processes that occur in
confinement conditions. For example, studies of Brownian
particles in narrow channels, where no mutual passage is
possible, have elucidated the activation of dynamic modes
responsible for a subdiffusive process known as single-file
diffusion [1-4]. Also, the study of the dynamical properties
of noninteracting particles on solid surfaces has explained
the anomalous diffusion in crystalline substrates [5,6]. Fur-
thermore, the dynamics of biological motors and macromol-
ecules occurs usually under confinement, i.e., heterogeneous
substrates or cell membranes [7,8].

Generally speaking, the dynamics in confinement depends
on the substrate-particle interaction, i.e., the topology of the
substrate, the particle-particle interaction, temperature, and
particle density. Basically, both interactions define the ener-
getic landscape where particles diffuse. In atomic systems, it
is difficult to quantify such energetic landscape. However,
micron-sized particles, i.e., colloids, are ideal candidates for
studying diffusion of interacting particles in external poten-
tials since the energetic landscape can be easily controlled
[9]. In particular, in the last few years two-dimensional (2D)
colloidal systems created artificially by confining the colloids
between two glass plates or two media (e.g., air-water inter-
face) [10,11] have served as fascinating and well-controlled
model systems to study phenomena such as freezing [12], the
controversial chargelike attraction [13], and many-body ef-
fective interactions [14], among others.

From both theoretical and experimental points of view,
the 2D colloidal systems exposed to periodic laser fields
have been the focus of extensive investigations. Since the
pioneering work of Chowdhury et al. [15], such systems
have been found to exhibit a rich phase behavior with a
solidlike order that depends on both the suspension proper-
ties and the substrate parameters, e.g., strength and periodic-
ity [16,17]. Related research also deals with topics such as
strain-induced domain formation [ 18], laser-induced freezing
(LIF), and melting [19-23].

*ramoncp @fisica.ugto.mx

1539-3755/2009/79(4)/041407(7)

041407-1

PACS number(s): 82.70.—y, 61.20.—p

Although the phase behavior of 2D colloids exposed to
light forces is well understood, less is known about the cor-
responding dynamical properties. A few works reported in
such direction show a rich variety of pinned and dynamic
states including pinned smectic, pinned buckled, two-phase
flow, and moving partially ordered structures [24,25]. None-
theless, the dependence of the mean-square displacement
(MSD) on the substrate strength has not been analyzed in
detail. The MSD is a suitable quantity for studying the dy-
namical behavior at different time scales. Recently, the MSD
of a single Brownian particle in random and quasicrystalline
potentials has been investigated [26]. Interestingly,
Schmiedeberg et al. [26] demonstrated that although quasic-
rystalline potentials exhibit long-range positional order the
nonequilibrium Brownian motion is very similar to the mo-
tion in a random substrate.

In this work, the MSD [W(¢)] of charged colloids in
monolayers subjected to sinusoidal-like substrates with a
commensurability ratio p=1 is measured by means of
Brownian dynamics (BD) simulations. With the increasing of
the substrate strength, we observe a transition from normal
diffusion, W(z) ¢, at short times to subdiffusion at interme-
diate times, W(r) o<1, described by a variable exponent a.
Such transition is explained in terms of a substrate-induced
distortion of the dynamic cage of nearest-neighbor colloids.
At long times normal diffusion is recovered, i.e., =1, with
a self-diffusion coefficient that varies with the substrate
strength and becomes smaller than that of the free-particle
diffusion coefficient. We particularly show that the variation
in the MSD at long times may be associated with the freez-
ing and the re-entrant melting transitions [15,20,22].

The paper is organized as follows. In Sec. II, we describe
the two-dimensional colloidal model system and the Brown-
ian dynamics simulation technique. We also review the struc-
tural and dynamic properties in the substrate-free case. In
Sec. III, the MSD and the average energy per particle as
function of the substrate strength are discussed. Finally, the
paper ends with concluding remarks.

II. MODEL SYSTEM, BROWNIAN DYNAMICS
SIMULATION, AND SUBSTRATE-FREE CASE

A. Model system and Brownian dynamics simulation

Let us consider a two-dimensional system consisting of N
particles and a particle number density p=N/A, with A being
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the total area of the system. It is well known that within the
fluid phase, and in the absence of external field, colloids that
interact repulsively are, in average, homogeneously distrib-
uted in the whole available area. Hence, particles are sepa-
ratedr by a characteristic mean interparticle distance given by
d=\p [27].

In the BD simulation, the configuration-space trajectories
are composed of successive displacements 7;(t+Af)—7(t) (i
=1,...,N) and generated from the stochastic equation [27]

Fi(t+ A1) = 7(0) = 957 (1)) At + S7(At), (1)

where O(7") is a differential operator which depends on
both the direct and hydrodynamic interactions [27]. The ran-
dom displacements &7;(Af) are chosen from a multivariate
Gaussian distribution function such that (&r;(Af))=0 and
(6r,(Ar)6ri(Ar))=2D;;At with D;; being the diffusion tensor
[27].

Neglecting hydrodynamic interactions, D;;=
becomes

Dy, Eq. (1)

7t + A1) = F(1) + BDof (DAL + 57:(Ar), (2)

with 8= (kzT)~! being the inverse of the thermal energy and

fi())==V (U*“+U*") denotes the total force acting on par-
ticle i due to the interaction with the other particles and its
coupling with the substrate. Dy, is the Stokes-Einstein diffu-
sion coefficient DO:%, with kp being the Boltzmann con-
stant, T the absolute temperature, 7 the solvent shear viscos-
ity, and a the particle radius. The total potential energy due
to the particle-particle interaction can be written as U
:ZE;‘;iu(rU), where u(r) represents the pair interaction po-
tential between colloids, which is expressed here by the re-
pulsive part of the Derjaguin-Landau-Verwey-Overbeek

(DLVO)-type potential [28],

exp(ka) } 2exp(— kr) 3)

2
Aulr)= Zeff}\B[ 1+ ka

-
with Az as the Bjerrum length, « as the Debye screening
parameter, and Z,. as the effective charge [28]. The total
external energy can then be written as U“'=3Y u®(r,),
where u®(7;) is the substrate potential acting on particle i,
which is given by

u(7) =V, sin(ﬂ), (4)
ar,

with V|, and a; being the strength and lattice spacing of the

substrate potential, respectively. Let us now define the com-

mensurability ratio p=+3d/(2a;). This factor allows one to

describe the variety of phases in systems under the influence

of periodic substrates [16].

As discussed previously, Eq. (2) gives the trajectory of
each colloidal particle. The dynamics of the system is then
simulated as follows. We consider a random initial configu-
ration of N=1600 colloidal particles placed in a rectangular
box of dimensions L, X L, with L= %Ly and periodic bound-
ary conditions on each direction. Then, particles move ac-
cording to Eq. (2). The system evolves from a nonequilib-
rium state to its corresponding equilibrium state. In order to
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find such state, we check the time evolution of the energy per
particle U/N, where U=U“+U*"; in a BD simulation U
varies until it reaches a constant value. In the following time
steps, the system is then in thermodynamic equilibrium.
Therefore, one is able to construct any function that requires
the average over the particle configurations.

The time step, At, in Eq. (2) is chosen not too big in order
to ensure that the force acting on the particle is approxi-
mately constant during its duration, but it must be not too
small to guarantee that we can use a description on the dif-
fusive regime. In view of this, we have used a time step of

Ar* = 22Ar=0.0002.

B. Substrate-free case

Typically, in experiments of 2D colloidal systems to be
exposed to light forces, the particle bulk density is usually
chosen between 5% and 10% below the spontaneous crystal-
lization [20]. Following the same protocol we should find the
density at which our 2D system crystallizes (according to the
values of the interparticle potential parameters chosen for the
study). Then, once the crystallization density is obtained, the
substrate periodicity is adjusted to fix the commensurability
ratio p=1. The potential parameters were taken from Ref.
[18], i.e., Z,;=5400, A3=0.72 nm, «'=550 nm, and a
=14 pm.

Nowadays, there are several empirical criteria for two-
dimensional freezing. One of them states that the amplitude
of the first maximum of the liquid structure factor, S(g),
reaches a value of 5.5 [29]. Also, a dynamical criterion for
two-dimensional freezing (valid in both three and two di-
mensions) was introduced by Lowen [30]. It says that the
ratio of the long- and short-time diffusion coefficients is 0.1
along the freezing line. We follow both criteria to find the
crystallization density.

Physical quantities such as S(g) and W(z) can be measured
either through experimental techniques, such as dynamic
light scattering, or numerically, such as BD simulations (see,
e.g., [27]). The static structure factor is simulated here by
using the relation [31]

N 2 N
S(g)=N"" (E cos(qg - r*,»)) + (E sin(q - 7-,-))
i=1 i=1

2

. (9

where the angular brackets (- --) denote an ensemble or tem-
poral average and ¢ is the magnitude of the wave vector g.
We average over 20 different angles of observation to im-
prove the statistics for the calculation of S(g). The MSD is
computed according to the relation [27]

N
W(1) = (Ar(0?) = N 2 ([F7(1) - F(O) ). (6)
i=1

This equation can be rewritten as W(t)=W,(t)+ W,(1), where
W.(t) and W,(#) denote the MSD in the directions x and y,
respectively.

Using Eq. (3) with the potential parameters mentioned
previously, we simulate the structure of a 2D suspension of
charged colloidal particles. Figure 1 shows S(g) for different
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FIG. 1. (Color online) Static structure factor S(g) obtained from
BD simulations for different packing fractions, ¢.

packing fractions, ¢ = ma’p. One can observe that the posi-
tion of the main peak does not change appreciably and it is
located at the position gd = 2r; this clearly indicates that the
mean distance between colloids is given by d regardless of
the packing fraction value. Furthermore, the height of the
main peak is increasing up to a value of =5.87 at ¢=0.175.

We now focus our attention to the reduced MSD, W*(r)
=W(t)/a? shown in Fig. 2. We can observe that for short
times, over small distances as compared to the particle size,
the MSD is not affected by the direct-interaction forces since
the configuration of the dynamic cage of nearest-neighbor
particles has not changed appreciably during the short time ¢.
The MSD shows a linear diffusion law with a short-time
self-diffusion coefficient Dg equal to the Stokesian diffusion
coefficient D of an isolated Brownian particle. This is due to
the neglecting of hydrodynamic interactions, which in prin-
ciple act instantaneously and could modify the value of Dy
even at short times. At intermediate times, the motion of the
particle becomes retarded by direct interaction with the cage
of neighboring particles, since the cage becomes distorted
from its equilibrium structure. The distortion implies a tran-
sition from linear to a sublinear time dependence of W(r). At
long times, the particle has experienced many collisions with
other particles and undergone a long-distance random walk
which again leads to a linear behavior, characterized by the
long-time self-diffusion coefficient, D;.
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FIG. 2. (Color online) Reduced mean-square displacement,
W*(r)=W(r)/a?, for different packing fractions with V=0 and po-
tential parameters taken from Ref. [18]. Inset: ratio W*(r)/4¢* which
at long times reduces to D;/Dy.
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In general, for homogeneous systems, a linear increase in
the MSD at short and long times is observed. This behavior
can be summarized as follows:

2DDgt, 1T <t<Tg
Wi(r) = (7)

2DDyt, t> 7,
where 73 is the typical relaxation time of the particle velocity
due to the solvent friction, TS=612/ Dy is the structural relax-
ation time, and D indicates the dimension of the system. It
has also been observed that D; = Dg, which can be attributed
to the hindrance of the particle motion by the direct forces,
regardless whether these forces are repulsive or attractive
[27].

From the inset of Fig. 2, one can easily observe that at
long times the ratio W*(r)/4r* (with t*=tDy/a®) results
equivalent to the ratio g—; and takes values smaller than 0.1
for packing fractions ¢>0.1634. Therefore, by following
both the static and dynamic criteria for two-dimensional
freezing, one can state that our homogeneous system crystal-
lizes around the packing fractions 0.1634<¢.<0.175.
Therefore, we fix the density of our reference system 10%
below the value ¢=0.17, then obtain a packing fraction of
=~().153. This value is used in our simulations with substrate,
ie., Vo #O0.

III. MEAN-SQUARE DISPLACEMENT:
SUBSTRATE EFFECTS

The reduced MSD as function of V/kzT is depicted
in Fig. 3. We observe that by increasing V,/kgT, a transi-
tion from normal short-time diffusion to subdiffusion at in-
termediate time scales appears. The short-time diffusion
(#*<107") only depends on the collision of colloids with the
solvent, which means that Dg=D, regardless of the value of
the substrate strength. At intermediate times, the particle dy-
namics is strongly affected by both the cage generated by
nearest-neighbor particles and the effective cage induced by
the substrate. Interestingly, the crossover time from normal
diffusion to subdiffusion occurs at earlier times as Vy/kpT
is increased. This is due to the fact that increasing the sub-
strate strength the direct particle-substrate interaction be-
comes more important inclusive at shorter times. For small
Vi (=3kgT) [see Fig. 3(a)], the transition from normal diffu-
sion to subdiffusion occurs continuously, i.e., diffusion de-
creases by increasing V. The reduction in the particle diffu-
sion is due to the particles must spend a longer time for
crossing several substrate minima before reaching the diffu-
sive motion. This causes that particles diffuse (or oscillate)
around the position of each substrate minimum for a long
period of time. This means that the time needed to surmount
the energetic barrier increases with the substrate strength.
For high V, (=4kgT) [see Fig. 3(b)] the MSD seems to col-
lapse onto a master curve, although we observe variations
(see inset). At long times the MSD recovers the linear in-
crease as the one described in Eq. (7). Nonetheless, the cor-
responding long-time self-diffusion coefficient D; varies
strongly with V,. Here one can appreciate that an increase in
V) is not necessarily related with a decrease in the particle
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FIG. 3. (Color online) Reduced mean-square displacement,
W*(z), for (a) small substrate strengths: 0=V,/kzT=3 and for (b)
large substrate strengths: 4 = V,/kpT=8. Inset shows the long-time
dynamics.

diffusion, i.e., particles can diffuse faster in some cases. For
example, it is clearly evident that for Vy=5kzT the diffusion
becomes slower than the case V,=6kgT [see inset of Fig.
3(b)]. This variation may be associated with the so-called
LIF and laser-induced melting (LIM) phenomena [15,19,20];
we will come back to this point later. For higher substrate
strengths, V,>9kgT, the diffusion decreases again (see be-
low).

To understand the effect of the substrate on the particle
dynamics, we also study both the MSDs on the direction
parallel, W,(¢), and perpendicular, W,(z), to the substrate. In
the homogeneous case, V,=0, we checked that W.,(¢)
= Wy(t)=%W(t), i.e., colloids diffuse, in average, in the same
fashion in any direction. W,(¢) is shown in Fig. 4(a) for small
substrate strengths, V,/kzT=0,...,3, and in Fig. 4(b) for
high substrate strengths, V,/kgT=4,...,8. In both cases, at
sufficiently short times, where the individual particles do not
feel the direct interactions with the other colloids, normal
diffusion occurs and the MSD is found to be W (¢)oct. At
intermediate times the diffusion process becomes subdiffu-
sive and for V(y<<3kzT normal diffusion is recovered at suf-
ficiently long times. However, for high substrates strengths a
well-defined plateau is observed and normal diffusion seems
to be completely suppressed in the x direction. This result
can be interpreted as a kind of freezing or glasslike transition
along the parallel direction. Looking now at the height of the
plateau, y>= W, (r*~ 10), one can estimate the cage size in-
duced by the substrate. This means that y allows one to
quantify the linear dimensions of the cage (or the line length)
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FIG. 4. (Color online) Reduced mean-square displacement in
the x direction, W(r), for (a) small substrate strengths: 0
=Vy/kpT=3 and for (b) large substrate strengths: 4 =V,/kpT=<8.
Inset: square root of the plateau height, y/a=\W(r*=10), as a
function of V,/kpT. Symbols are obtained from the simulations and
the line is a fit of the form yo<exp(-=Vy/V,).

where the particle position fluctuates around the substrate
minimum in the x direction. A simple exponential decay fit,
yoexp(=Vy/V.), can be used to reproduce the whole behav-
ior of vy [see inset of Fig. 4(b)]. We find that V,=~5.25k,T,
which would correspond to the substrate strength at which
diffusion in x is completely suppressed. Therefore, the varia-
tion observed in the MSD of Fig. 3 cannot be explicitly
attributed to W,(z).

Although the substrate affects the particle diffusion along
the x direction, colloids can still diffuse in the perpendicular
direction, i.e., y direction. Figure 5 shows W,(#), which evi-
dently reflects the variation in the MSD of Fig. 3 for large
substrate strengths. The only way to explain diffusion along
the y direction is through thermal fluctuations, which are not
completely suppressed by the substrate and therefore pro-
mote diffusion along the perpendicular direction.

So far, one can conclude that the mean-square displace-
ment of interacting particles in a periodic substrate behaves
as W(r)oct®. Both fitting and derivative procedures to the
MSD of Fig. 3 permit to reveal the behavior of the exponent
a as a function of Vy/kgT at different time scales. At short
times evidently a=1. Figure 6 shows that at long times «
=~ 1. This means that normal diffusion is recovered and the
linear law (7) can accurately be used to describe both self-
diffusion coefficients at short and long times. However, at
intermediate times the dynamics becomes subdiffusive with
an exponent a which decreases with V. Nonetheless, a well-
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FIG. 5. (Color online) Reduced mean-square displacement in
the y direction, W;(t), for (a) small substrate strengths: 0
=Vy/kgT=3 and for (b) large substrate strengths: 4 = V,/kpT=38.
Inset: variation in W;f(t) at long times.

defined plateau for V> 5kyT is observed. Such plateau in-
dicates that the particle subdiffusion no longer depends on
the substrate strength and, as we will see further below, this
effect is due to the colloid-colloid interaction.

An important quantity in colloidal dynamics is the ratio
D;/Dg. In homogeneous systems, such ratio allows quanti-
fying the effect of the interparticle interactions on the system
transport properties [27]. Moreover, it has also been used to
introduce a dynamical criterion for describing the liquid-
freezing transition in colloidal suspensions [30]. Following
similar ideas, here we try to establish a connection between
the long-time self-diffusion coefficient and both LIF and
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FIG. 6. (Color online) Behavior of the exponent «, which fits
the MSD of Fig. 3, as a function of V at intermediate and long
times. Lines are just a guide for the eyes.
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FIG. 7. (Color online) Long-time self-diffusion coefficient for
different substrate strengths, V/kgT. Blue arrows indicate a pos-
sible LIF, whereas red arrow describes the region of a possible LIM.

LIM transitions. Figure 7 depicts the ratio D; /Dy for differ-
ent substrate strengths. Immediately, we can observe that D,
is 2 or 3 orders of magnitude smaller than Dg. Therefore, if
one assumes that the Lowen criterion [30] also holds in this
case, the system should be evidently in a freezinglike state.
Nonetheless, the variations in D; can be a strong evidence of
the LIF and LIM phenomena [15,19,20]. To clarify this
point, we should mention that LIF takes place at relatively
small substrate strengths [22], where it is expected a decrease
in D; with V, as the one observed in 0<V,/kpT<2. Simi-
larly, the LIM transition is observed at higher values of V,
[22]. In such transition, a remelting of the crystal back into a
modulated liquid phase occurs. Then, in terms of a diffusion
process, a modulated liquid should be characterized by an
increase, not necessarily continuous, in the particle diffusion,
as the one depicted in the interval 3 <V,/kzT<<6. Hence, the
variation in the long-time self-diffusion coefficient seems to
describe qualitatively the expecting dynamical features of
both LIF and LIM transitions. In this sense, our findings are
twofold. First, they allow us to verify the phase behavior of
the system and, second, to establish a dynamical-like crite-
rion, based on the variations in D;, to describe the effect of
the substrate on the system phase since a static criterion
based on the decay of the pair-correlation function, g(y), is
already well established [22].

The subdiffusive process at intermediate times can be ex-
plained by using energetic arguments. We should emphasize
that for substrate strengths V,>1.5kpT, the colloids are
trapped on the potential minima along the direction parallel
to the substrate. They are basically separated by a distance
close to a; forming well-spaced strips of colloids. Figure 8
allows us to visualize the structural changes in the system as
function of V. Although the snapshots suggest a crystal-like
structure, a simple Voronoi analysis shows that the systems
are not completely in the hexagonal crystal phase (data not
shown). Clearly, each strip cannot be independent; otherwise,
colloids must diffuse as in a one-dimensional channel. In
such case, the MSD would scale as W(z) oct®* with a=1/2
[3,4]. However, Fig. 6 demonstrates that at intermediate
times a# 1/2. This behavior should be related with the fact
that the pair interaction between colloids of different strips is
not completely negligible; each strip can interact with its
nearest neighbor.

The discussion of the last paragraph can be better visual-
ized in Fig. 9, where the average colloid-colloid potential
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FIG. 8. (Color online) Snapshots of the two-dimensional system
for different substrate strengths, Vy/kpT.

energy per particle, U°“/N, as function of the substrate
strength is shown. We observe that such contribution de-
creases quickly in the interval 0=V,/kgT =2, i.e., when the
system is approaching to the freezinglike state, and shows a
slower and variable behavior for V(> 3kpT until it reaches a
constant value of =1.4kpT for V> 5kzT. We should point
out that, on one hand, the behavior of U“ evidences the
importance of the interparticle interaction on the subdiffusive
processes that occur at intermediate time scales since « ba-
sically shows the same behavior (see Fig. 6). On the other
hand, the origin of the variation in U comes from the com-
petition between both particle-particle and substrate-particle
interactions, i.e., a distortion induced by the substrate in the
configuration of the dynamic cage of nearest-neighbor col-
loids. Additionally, the inset shows the total energy per par-
ticle. There one can appreciate that the contribution of the
substrate becomes dominant when V|, is larger than that of
the average energy per particle in the substrate-free case, i.e.,
Vo>2kpgT.

IV. CONCLUSIONS

We have carried out Brownian dynamics simulations to
study the diffusive motion in a two-dimensional colloidal
system subjected to a sinusoidal substrate. In particular, we
measured the MSD for different substrate strengths. The
MSD is a suitable quantity to investigate the particle dynam-
ics at different time scales. We observed that the resulting
behavior in the MSD can be explained in terms of the
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FIG. 9. Average colloid-colloid energy per particle as function
of V. Inset shows the average total energy per particle. The line is
just a guide for the eyes.

substrate-induced distortion in the configuration of the dy-
namic cage of nearest-neighbor colloids.

We found that the linear increase law of the MSD can also
be used to describe accurately both the short- and long-time
dynamics. However, at intermediate time scales the dynam-
ics became subdiffusive since the interparticle interaction
contribution is relevant inclusive at high substrate strengths.
We also observed that the variations in the long-time self-
diffusion coefficient can be used to establish a dynamical-
like criterion to understand the system phase behavior from a
dynamical point of view. In particular, this criterion is able to
explain the main features of the well-known laser-induced
freezing and laser-induced melting transitions. Additionally,
the diffusive behavior in the direction parallel to the sub-
strate indicated a kind of dynamic arrest in such direction.
We also found that the linear dimensions of the dynamic
cage depends strongly on the substrate strength and can sim-
ply be described by an exponential-like function.

Finally, we should remark that our results can be con-
firmed in experiments of light forces. Moreover, the substrate
model used in our work can be generalized to the case of
random or periodic two-dimensional potential. This will al-
low us to understand fully the diffusion process of interact-
ing Brownian particles on substrate potentials. Further inves-
tigation along these lines is in progress.
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